拼搏

拼搏

led驱动IC smd sot23-6 63b18(好像是63818) 请用过的朋友帮忙告知型号及品牌。_18cmic公告

admin

本文目录一览

关于集成电路(IC)的英文介绍,急需,请帮帮忙, 谢谢啦

What is an Integrated Circuit?
Background

An integrated circuit, commonly referred to as an IC, is a microscopic array of electronic circuits and components that has been diffused or implanted onto the surface of a single crystal, or chip, of semiconducting material such as silicon. It is called an integrated circuit because the components, circuits, and base material are all made together, or integrated, out of a single piece of silicon, as opposed to a discrete circuit in which the components are made separately from different materials and assembled later. ICs range in complexity from simple logic modules and amplifiers to complete microcomputers containing millions of elements.

The impact of integrated circuits on our lives has been enormous. ICs have become the principal components of almost all electronic devices. These miniature circuits have demonstrated low cost, high reliability, low power requirements, and high processing speeds compared to the vacuum tubes and transistors which preceded them. Integrated circuit microcomputers are now used as controllers in equipment such as machine tools, vehicle operating systems, and other applications where hydraulic, pneumatic, or mechanical controls were previously used. Because IC microcomputers are smaller and more versatile than previous control mechanisms, they allow the equipment to respond to a wider range of input and produce a wider range of output. They can also be reprogrammed without having to redesign the control circuitry. Integrated circuit microcomputers are so inexpensive they are even found in children's electronic toys.

The first integrated circuits were created in the late 1950s in response to a demand from the military for miniaturized electronics to be used in missile control systems. At the time, transistors and printed circuit boards were the state-of-the-art electronic technology. Although transistors made many new electronic applications possible, engineers were still unable to make a small enough package for the large number of components and circuits required in complex devices like sophisticated control systems and handheld programmable calculators. Several companies were in competition to produce a breakthrough in miniaturized electronics, and their development efforts were so close that there is some question as to which company actually produced the first IC. In fact, when the integrated circuit was finally patented in 1959, the patent was awarded jointly to two individuals working separately at two different companies.

After the invention of the IC in 1959, the number of components and circuits that could be incorporated into a single chip doubled every year for several years. The first integrated circuits contained only up to a dozen components. The process that produced these early ICs was known as small scale integration, or SSI. By the mid-1960s, medium scale integration, MSI, produced ICs with hundreds of components. This was followed by large scale integration techniques, or LSI, which produced ICs with thousands of components and made the first microcomputers possible.

The first microcomputer chip, often called a microprocessor, was developed by Intel Corporation in 1969. It went into commercial production in 1971 as the Intel 4004. Intel introduced their 8088 chip in 1979, followed by the Intel 80286, 80386, and 80486. In the late 1980s and early 1990s, the designations 286, 386, and 486 were well known to computer users as reflecting increasing levels of computing power and speed. Intel's Pentium chip is the latest in this series and reflects an even higher level.

How Integrated Circuit
Components Are Formed

In an integrated circuit, electronic components such as resistors, capacitors, diodes, and transistors are formed directly onto the surface of a silicon crystal. The process of manufacturing an integrated circuit will make more sense if one first understands some of the basics of how these components are formed.

Even before the first IC was developed, it was known that common electronic components could be made from silicon. The question was how to make them, and the connecting circuits, from the same piece of silicon? The solution was to alter, or dope, the chemical composition of tiny areas on the silicon crystal surface by adding other chemicals, called dopants. Some dopants bond with the silicon to produce regions where the dopant atoms have one electron they can give up. These are called N regions. Other dopants bond with the silicon to produce regions where the dopant atoms have room to take one electron. These are called P regions. When a P region touches an N region, the boundary between them is referred to as a PN junction. This boundary is only 0.000004 inches (0.0001 cm) wide, but is crucial to the operation of integrated circuit components.

Within a PN junction, the atoms of the two regions bond in such a manner as to create a third region, called a depletion region, in which the P dopant atoms capture all the N dopant extra electrons, thus depleting them. One of the phenomena that results is that a positive voltage applied to the P region can cause an electrical current to flow through the junction into the N region, but a similar positive voltage applied to the N region will result in little or no current flowing through the junction back into the P region. This ability of a PN junction to either conduct or insulate depending on which side the voltage is applied can be used to form integrated circuit components that direct and control current flows in the same manner as diodes and transistors. A diode, for example, is simply a single PN junction. By altering the amount and types of dopants and changing the shapes and relative placements of P and N regions, integrated circuit components that emulate the functions of resistors and capacitors can be also be formed.

Design

Some integrated circuits can be considered standard, off-the-shelf items. Once designed, there is no further design work required. Examples of standard ICs would include voltage regulators, amplifiers, analog switches, and analog-to-digital or digital-to-analog converters. These ICs are usually sold to other companies who incorporate them into printed circuit boards for various electronic products.

Other integrated circuits are unique and require extensive design work. An example would be a new microprocessor for computers. This design work may require research and development of new materials and new manufacturing techniques to achieve the final design.

Raw Materials

Pure silicon is the basis for most integrated circuits. It provides the base, or substrate for the entire chip and is chemically doped to provide the N and P regions that make up the integrated circuit components. The silicon must be so pure that only one out of every ten billion atoms can be an impurity. This would be the equivalent of one grain of sugar in ten buckets of sand. Silicon dioxide is used as an insulator and as a dielectric material in IC capacitors.

Typical N-type dopants include phosphorus and arsenic. Boron and gallium are typical P-type dopants. Aluminum is commonly used as a connector between the various IC components. The thin wire leads from the integrated circuit chip to its mounting package may be aluminum or gold. The mounting package itself may be made from ceramic or plastic materials.

The Manufacturing
Process

Hundreds of integrated circuits are made at the same time on a single, thin slice of silicon and are then cut apart into individual IC chips. The manufacturing process takes place in a tightly controlled environment known as a clean room where the air is filtered to remove foreign particles. The few equipment operators in the room wear lint-free garments, gloves, and coverings for their heads and feet. Since some IC components are sensitive to certain frequencies of light, even the light sources are filtered. Although manufacturing processes may vary depending on the integrated circuit being made, the following process is typical.

Preparing the silicon wafer

A cylindrical ingot of silicon about 1.5 to 4.0 inches (3.8 to 10.2 cm) in diameter is held vertically inside a vacuum chamber with a high-temperature heating coil encircling it. Starting at the top of the cylinder, the silicon is heated to its melting point of about 2550°F (1400°C). To avoid contamination, the heated region is contained only by the surface tension of the molten silicon. As the region melts, any impurities in the silicon become mobile. The heating coil is slowly moved down the length of the cylinder, and the impurities are carried along with the melted region. When the heating coil reaches the bottom, almost all of the impurities have been swept along and are concentrated there. The bottom is then sliced off, leaving a cylindrical ingot of purified silicon.
A thin, round wafer of silicon is cut off the ingot using a precise cutting machine called a wafer slicer. Each slice is about 0.01 to 0.025 inches (0.004 to 0.01 cm) thick. The surface on which the integrated circuits are to be formed is polished.
The surfaces of the wafer are coated with a layer of silicon dioxide to form an insulating base and to prevent any oxidation of the silicon which would cause impurities. The silicon dioxide is formed by subjecting the wafer to superheated steam at about 1830°F (1000°C) under several atmospheres of pressure to allow the oxygen in the water vapor to react with the silicon. Controlling the temperature and length of exposure controls the thickness of the silicon dioxide layer.
Masking

The complex and interconnected design of the circuits and components is prepared in a process similar to that used to make printed circuit boards. For ICs, however, the dimensions are much smaller and there are many layers superimposed on top of each other. The design of each layer is prepared on a computer-aided drafting machine, and the image is made into a mask which will be optically reduced and transferred to the surface of the wafer. The mask is opaque in certain areas and clear in others. It has the images for all of the several hundred integrated circuits to be formed on the wafer.
A drop of photoresist material is placed in the center of the silicon wafer, and the wafer is spun rapidly to distribute the photoresist over the entire surface. The photoresist is then baked to remove the solvent.
The coated wafer is then placed under the first layer mask and irradiated with light. Because the spaces between circuits and components are so small, ultraviolet light with a very short wavelength is used to squeeze through the tiny clear areas on the mask. Beams of electrons or x-rays are also sometimes used to irradiate the photoresist.
The mask is removed and portions of the photoresist are dissolved. If a positive photoresist was used, then the areas that were irradiated will be dissolved. If a negative photoresist was used, then the areas that were irradiated will remain. The uncovered areas are then either chemically etched to open up a layer or are subjected to chemical doping to create a layer of P or N regions.
Doping—Atomic diffusion

One method of adding dopants to create a layer of P or N regions is atomic diffusion. In this method a batch of wafers is placed in an oven made of a quartz tube surrounded by a heating element. The wafers are heated to an operating temperature of about 1500-2200°F (816-1205°C), and the dopant chemical is carried in on an inert gas. As the dopant and gas pass over the wafers, the dopant is deposited on the hot surfaces left exposed by the masking process. This method is good for doping relatively large areas, but is not accurate for smaller areas. There are also some problems with the repeated use of high temperatures as successive layers are added.
Doping—lon implantation

The second method to add dopants is ion implantation. In this method a dopant gas, like phosphine or boron trichloride, is ionized to provide a beam of high-energy dopant ions which are fired at specific regions of the wafer. The ions penetrate the wafer and remain implanted. The depth of penetration can be controlled by altering the beam energy, and the amount of dopant can be controlled by altering the beam current and time of exposure. Schematically, the whole process resembles firing a beam in a bent cathode-ray tube. This method is so precise, it does not require masking—it just points and shoots the dopant where it is needed. However it is much slower than the atomic diffusion process.
Making successive layers

The process of masking and etching or doping is repeated for each successive layer depending on the doping process used until all of the integrated circuit chips are complete. Sometimes a layer of silicon dioxide is laid down to provide an insulator between layers or components. This is done through a process known as chemical vapor deposition, in which the wafer's surface is heated to about 752°F (400°C), and a reaction between the gases silane and oxygen deposits a layer of silicon dioxide. A final silicon dioxide layer seals the surface, a final etching opens up contact points, and a layer of aluminum is deposited to make the contact pads. At this point, the individual ICs are tested for electrical function.
Making individual ICs

The thin wafer is like a piece of glass. The hundreds of individual chips are separated by scoring a crosshatch of lines with a fine diamond cutter and then putting the wafer under stress to cause each chip to separate. Those ICs that failed the electrical test are discarded. Inspection under a microscope reveals other ICs that were damaged by the separation process, and these are also discarded.
The good ICs are individually bonded into their mounting package and the thin wire leads are connected by either ultrasonic bonding or thermocompression. The mounting package is marked with identifying part numbers and other information.
The completed integrated circuits are sealed in anti-static plastic bags to be stored or shipped to the end user.
Quality Control

Despite the controlled environment and use of precision tools, a high number of integrated circuit chips are rejected. Although the percentage of reject chips has steadily dropped over the years, the task of making an interwoven lattice of microscopic circuits and components is still difficult, and a certain amount of rejects are inevitable.

Hazardous Materials and
Recycling

The dopants gallium and arsenic, among others, are toxic substances and their storage, use, and disposal must be tightly controlled.

Because integrated circuit chips are so versatile, a significant recycling industry has sprung up. Many ICs and other electronic components are removed from otherwise obsolete equipment, tested, and resold for use in other devices.

The Future

It is difficult to tell with any certainty what the future holds for the integrated circuit. Changes in technology since the device's invention have been rapid, but evolutionary. Many changes have been made in the architecture, or circuit layout, on a chip, but the integrated circuit still remains a silicon-based design.

The next major leap in the advancement of electronic devices, if such a leap is to come, may involve an entirely new circuit technology. Better devices than the very best microprocessor have always been known to be possible. The human brain, for example, processes information much more efficiently than any computer, and some futurists have speculated that the next generation of processor circuits will be biological, rather than mineral. At this point, such matters are the stuff of fiction. There are no immediate signs that the integrated circuit is in any danger of extinction.

led驱动IC smd sot23-6 63b18(好像是63818) 请用过的朋友帮忙告知型号及品牌。

百盛代理经销以下品牌系列型号:
74HC245 74HC595 TB62726 APM4953 74HC138
1.上海华润矽威品牌PT4115、PT1301,PT4205,PT6112,PT4204/PT4203等一系列均可订货!
2.台湾远翔品牌FP5139BWR,FP6290,FP6291,FP6292等一系列均可订货!
3.台湾亚莱瑟特品牌AX3117,AX3111,AX5510/AX5511、AX6901,AX2020等一
系列均可订货!
4.微盟品牌:ME6201系列ME6206/ME6207/ME6208/ME6209/ME6211系列、ME6219/ME6211系列、ME3206系列、ME6117/ME1116/ME1117系列、ME1084/ME1085系列、ME2108/ME2100/ME2180系列、ME2801/ME2802系列、、ME7660系列、ME301/331/501系列、ME2109/ME2129/ME3101系列、ME8100/ME8101/ME8200/ME8300系列、ME2206/ME2106系列,ME2604系列ME4054等均可订货!
5.UTC品牌:UTC78L系列、UTC78D系列、LD1117系列、UR133系列、UTC8128系列、UTC78L05、UTC34063系列等均可订货!
6.富晶/富满品牌:DW01+FS8205系列、二合一DW02A系列等均可订货!
6.BCD品牌:、AP3706/AP3766/AP4313系列、AZ1117系列、、AZ1084系列、AZ1085系列、AZ1086系列、AZ431/ AZ432系列等均可订货!
7.特瑞士品牌:XC6201/XC6206/XC6204/XC6219系列、XC62FP系列、XC61CC/61CN系列、XC6367/XC6371/XC6382系列、XP151/XP152系列等均可订货!
8.贝岭品牌:BL1117系列、BL8530/BL8550系列,BL8506/BL8503/BL8532系列等
9.思旺品牌:SE809系列、SE8117系列、SE8119系列、SE1122、SE9016/SE9017/SE9020系列、SE431/SE432系列、SE1051系列等均可订货!
10.MOS管:SI23系列、AO34系列、4407、4410、4606、4435、4953、9435、9926等均可订货!
11.芯联CL系列产品CL1100,CL1101,CL6807,CL6808,CL6201,CL6562等均可订货!

12.AMS品牌:AMS1117系列、AMS1084系列、AMS1085系列等
13.KIA品牌:KIA78L系列、KIA79L系列、RE301/331/501等
14.ST品牌:L78L05/L78LXX系列、L79L05/L79LXX系列等
15.合泰品牌:HT70系列、HT71系列、HT73系列、HT75系列等
16.长电品牌:78L系列、79L系列、78M系列等

电子元器件的储存方法及保管条件是什么?

场所:立体式货架仓库:通风、干燥、无腐蚀性气体。仓库保持通风、通光、通气、通道通畅状态,严禁吸烟,禁止违章用火、用电并做好防火工作,消防标识明确。
4.2.2 贮存条件和期限
(1)无特殊要求的物品(合格原材料、半成品)
存储条件:遮阳、常温、保持通风,干燥。
(2)储存期限
①电子元器件的有效储存期为12个月;
②塑胶件的有效储存期为12个月;
③五金件的有效储存期6个月;
④包装材料的有效储存期为12个月;
⑤成品的有效储存期为12个月。
(3)特殊要求的物品
针对特殊要求的物料根据存储要求存放。
物料类别存贮相对 温度贮存相对
湿度存贮高度、
容器贮存期限

锡膏、胶水类2-10℃无特殊要求冰箱、冰柜根据保质期规定
电子元器件20±5℃40%~70%电子仓,标准包装 12个月

4.4 防护
4.4.1 电子仓防护要求
4.4.1.1 电子仓要求有防静电地板,人员必须按照防静电的要求,着装防静电服,佩戴防静电手环。
4.4.1.2 要求按物品的类别分区存放,易燃易爆品要求有适当的隔离措施,针对特殊要求的物品应有显著的警示标识或安全标识。
4.4.1.3 物料摆放整齐,存料卡出、入库内容规范,做到帐、物、卡相符。
4.4.1.4 物品不可直接落地存放,需有托盘或货架防护。
4.4.1.5 物料叠放要求上小下大,上轻下重,一个托盘只能放置同一种物料,堆放高度有特殊要求的依据特殊要求堆放,但最高不得超过160cm。
4.4.1.6 散料、盘料及有特殊要求的物品存放具体参考相关规范。
4.4.1.7 对有防静电要求的物品必须根据实际情况选择以下方法:装入防静电袋和防静电周转箱存放等。
4.4.2 原材料防护要求
4.4.2.1 主要针对产品元器件、PCB板、五金件、塑胶件、包材等的防护。
4.4.2.2 电子元器件应充分考虑防尘和防潮等方面的要求。
4.4.2.3 对于真空包装的PCB光板、IC 等要将其完好包装,不能让铜箔和引脚直接暴露在空气中,以防止产品氧化。
4.4.2.4 针对特殊原材料的防护请依据其要求进行防护。
4.4.2.5 对于有引脚的元件特别是IC等引脚容易变形的元件在盛装时要采用原厂的包装形式,避免元件引脚变形导致不方便甚至不能作业。
4.4.2.6 原材料防护见下表

防护作业过程防护设施或设备防护要点责任部门
元器件库房、工位架、防静电袋、防静电箱静电防护物流部
PCB板库房、工位架、防静电袋、防静电箱静电防护物流部
五金件库房、工位架、纸箱、胶筐磕碰、划伤物流部
塑胶件库房、工位架、纸箱、胶筐挤压、磕碰、划伤物流部
包材库房、栈板 防雨防潮物流部
附件及配件

磁铁库房、工位架、栈板、纸箱

纸箱、胶筐
防雨防潮

与其他五金件隔离物流部

物流部

4.4.3 成品仓防护要求
4.4.3.1 要求防雨防潮,遮阳,保持通风干燥。
4.4.3.2 出、入库要轻拿轻放,严禁乱摔、乱抛。
4.4.3.3 堆放合理,严格按照成品要求的堆放层数堆放。

登海3206玉米种子简介(登海3206审定公告介绍)

登海3206(审定编号:豫审玉20180028)玉米种子的夏播生育期103.0-105.0天。芽鞘浅紫色,叶片浓绿色,主茎叶片数18-20片。该玉米品种的株型半紧凑,果穗筒型,穗轴粉红色,籽粒黄色、马齿型,千粒重302.9-329.7克。登海3206玉米中抗茎腐病、穗腐病、瘤黑粉病、弯孢菌叶斑病,感小斑病,高感锈病。
登海3206玉米品种简介
登海3206玉米种子在2018年己被国审,属于中熟普通玉米,是一个典型的夏播玉米品种。该玉米新品种研究出来好几年了,目前推广较快。
登海3206玉米种子审定公告
审定编号豫审玉20180028
品种名:登海3206
品种来源:WH35-12×W166
申请者:河南登海中研种业有限公司
育种者:河南登海中研种业有限公司
审定意见:该品种符合河南省玉米品种审定标准,通过审定。适宜河南玉米种植区种植。注意防止倒伏倒折和防治小斑病、锈病等病虫害。
登海3206玉米种子特征特性怎么样
品种特点
①生育期

登海3206的夏播生育期103.0-105.0天。
②株型
登海3206玉米的芽鞘浅紫色,叶片浓绿色,第一叶卵圆形。该玉米品种的主茎叶片数18-20片,株型半紧凑,株高281.8-295.0cm,穗位高106.6-116.0cm。
且登海3206雄穗分枝中,雄穗颖片绿色,花药黄色,花丝浅紫色。
③果穗
登海3206的果穗筒型,穗长18.1-18.6cm,穗粗4.7-4.9cm,穗行数14-18行,行粒数35.0-35.1粒,秃尖长0.9-1.6cm
④籽粒
登海3206玉米的穗轴粉红色,籽粒黄色、马齿型,千粒重302.9-329.7g,出籽率86.2-89.0%。
④田间表现
登海3206玉米品种的平均田间倒折率0.0-3.5%,倒伏率0.0-7.3%,空秆率0.7-1.3%,双穗率0.1-1.3%。
抗性鉴定
2015-2016年河南农业大学植物保护学院接种鉴定:登海3206玉米中抗茎腐病、穗腐病、瘤黑粉病、弯孢菌叶斑病,感小斑病,高感锈病。
品质分析
2015年农业部农产品质量监督检验测试中心(郑州)检测:登海3206玉米的容重740g/L,粗蛋白质8.51%,粗脂肪3.66%,粗淀粉77.78%,赖氨酸0.32%。
2016年农业部农产品质量监督检验测试中心(郑州)检测:登海3206玉米的容重752g/L,粗蛋白质10.51%,粗脂肪3.5%,粗淀粉74.45%,赖氨酸0.34%。
产量表现
①玉米区域试验亩产量
2015年河南省玉米区域试验(4500株/亩),12点汇总,9点增产,增产点率75.0%,平均亩产665.3kg,比对照郑单958增产7.6%。
2016年续试,11点汇总,10点增产,增产点率90.9%,平均亩产629.02kg,比对照郑单958增产9.5%。
②玉米生产试验产量
2017年河南省玉米生产试验,12点汇总,11点增产,增产点率91.7%,平均亩产643.6kg,比对照郑单958增产6.3%。
栽培技术要点
①播期与密度:河南省夏播,6月上中旬播种,种植密度4000-4500株/亩
②田间管理:苗期注意防治蓟马、地老虎、蚜虫。中后期注意防治玉米螟和蚜虫。科学施肥,喇叭口期和散粉期遇干旱及时浇水。
③适时收获:玉米籽粒尖端出现黑色层时收获。
④注意病虫害防治:做好苗期虫害防治,预防粗缩病。注意中后期病虫害,做好瘤黑粉病、南方锈病、玉米螟等的防治工作。

牵牛花种

  别名 黑丑、白丑、二丑、喇叭花。
  来源 为旋花科植物圆叶牵牛pharbitis purpurea (L.)Voight的种子。
  植物形态 一年生缠绕草本,全株密被白色长毛。叶互生,阔心形,全缘;叶柄与总花梗近等长。花序有花1~3朵;萼片5深裂,裂片卵状披针形,长约1cm,先端尾尖;花冠白色、蓝紫色或紫红色,漏斗状,长5~8cm;雄蕊5;子房3室。蒴果球形。种子5~6粒,卵形,黑色或淡黄白色。花期6~9月,果期7~10月。
  生于山野灌丛中、村边、路旁;多栽培。全国各地有分布。
  采制 秋末果实成熟、果壳未开裂时采割植株,晒干,打下种子,除去杂质。
  性状 种子似橘瓣状,长4~8mm,宽3~5mm。表面灰黑色(黑丑)或淡黄白色(白丑)。背面有1条浅纵沟,腹面接线的近端处有1点状种脐,微凹。质硬,浸水中作龟裂状胀破,内有浅黄色子叶两片,紧密重叠而皱曲。味辛、苦,有麻感。
  性味 性寒,味苦;有毒。
  功能主治 泻水通便,消痰涤饮,杀虫攻积。用于水肿胀满,二便不通,痰饮积聚,气逆喘咳,虫积腹痛,蛔虫、绦虫病。
  附注 同属植物裂圳牵牛P. nil(L.)Choisy的种子亦作牵牛子入药。
  【英文名】 SEMEN PHARBITIDIS
  【别名】牵牛、黑丑、白丑、二丑、喇叭花子
  【来源】本品为旋花科植物裂叶牵牛Pharbitis nil (L.) Choisy 或圆叶牵牛Pharbitis purpurea (L.)Voigt 的干燥成熟种子。秋末果实成熟、果壳未开裂时采割植株,晒干,打下种子,除去杂质。
  【制法】
  牵牛子:除去杂质。用时捣碎。
  炒牵牛子:取净牵牛子,照清炒法(附录Ⅱ D)炒至稍鼓起。用时捣碎。
  【性状】本品似橘瓣状,长4~8mm,宽3~5mm。表面灰黑色或淡黄白色,背面有一条浅纵沟,腹面棱线的下端有一点状种脐,微凹。质硬,横切面可见淡黄色或黄绿色皱缩折叠的子叶,微显油性。无臭,味辛、苦,有麻感。
  【鉴别】
  (1) 取本品,加水浸泡后种皮呈龟裂状,手捻有明显的黏滑感。
  (2) 本品粉末淡黄棕色。种皮表皮细胞深棕色,形状不规则,壁微波状。非腺毛单细胞,黄棕色,稍弯曲,长50~240μm。子叶碎片中有分泌腔,圆形或椭圆形,直径35~106μm。草酸钙簇晶直径10~25μm 。栅状组织碎片及光辉带有时可见。
  (3) 取本品1g,研碎,加2mol/L盐酸乙醇溶液30ml,加热回流1。5小时,滤过,滤液加水40ml,置水浴上蒸至无醇味,水溶液置分液漏斗中,加苯30ml振摇提取,分取苯层,回收溶剂,残渣加无水乙醇1ml使溶解,作为供试品溶液。另取牵牛子对照药材1g,同法制成对照药材溶液。照薄层色谱法(附录Ⅵ B)试验,吸取上述两种溶液各4μl,分别点于同一硅胶G薄层板上,以环已烷-醋酸乙酯(9:1)为展开剂,展开,取出,晾干,喷以5%香草醛硫酸溶液,在105℃加热至斑点显色清晰。供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的斑点。
  【性味归经】苦、寒;有毒。归肺、肾、大肠经。
  【功能主治】泻水通便,消痰涤饮,杀虫攻积。用于水肿胀满,二便不通,痰饮积聚,气逆喘咳,虫积腹痛,蛔虫、绦虫病。
  【用法用量】 3~6g 。
  【贮藏】置干燥处。
  【备注】
  (1)用于腹水肿胀,可配合攻下逐水药如甘遂、芫花、大戟等同用。用于痰壅气滞、咳逆喘满,常与葶苈子、杏仁等配合应用。用于虫积腹痛,常配伍槟榔、大黄等同用,对蛔虫、绦虫都有驱杀作用。
  (2)牵牛子为峻下的药品,少用则通大便,多用则泻下如水,且能利尿,故在临床上主要用于腹水肿胀、二便不利及宿食积滞、大便秘结等症。至于用治痰壅气滞、咳逆喘满,则只宜暂用,不可久服。如属脾弱胃呆、气虚腹胀者,当以健脾补中为要,不宜用本品攻泻消积,克伐胃气。
  [功 效] 泻水通便,祛痰逐饮,杀虫消积。
  [成 分] 含牵牛子甙(树脂甙类)、脂肪油、有机酸等。
  [应 用] 用于湿热气滞壅结胀满的肝癌或肝硬化患者出现腹水鼓胀,下肢浮肿等,常与大腹皮、大黄、厚朴、八月札等配合应用;对腹腔肿瘤出现腹水肿胀,大便秘结等,可与白术、半枝莲、半边莲、生黄芪等配合应用。
  [常用剂量] 2-3克,水煎服。研末吞服,每次0.5~1克,每日2~3次。
  [注 意] 用量过大可出现神经系统症状及便血、腹痛、呕吐等副反应。因此,本品只宜转用,正气亏虚所致的虚胀不宜应用。
  [编辑本段]化学成分
  1.牵牛 种子含牵牛子甙(pharbitin)约3%,系树脂性甙,用碱水解得到牵牛子酸(pharbitic acid),巴豆酸(tiglic acid),裂叶牵牛子酸(nilic acid),α-甲基丁酸(α-methylbutyric acid)及戊酸(valeric acid)等。牵牛子酸为混合物,分离得到牵牛子酸A、B、C、D,以后二者为主;牵牛子酸C系由番红醇酸(ipurolic acid) 与2分子D-葡萄糖(D-glucose)缩合而成的甙,牵牛子酸D比牵牛子酸C多含1分子鼠李糖。种子还含生物碱;裸麦角碱(chanoclavine),野麦碱(elymoclavine),狼尾草麦角碱(penniclavine),田麦角碱(agroclavine),麦角醇(lyser-gol)等。又含脂肪油11%及其他糖类。未成熟种子含多种赤霉素及其葡萄糖甙:赤霉素(gib-berellin)A3、A5、A20、A26、A27;赤霉素葡萄糖甙(gibberellin glucoside)Ⅰ、Ⅱ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、F-Ⅶ。
  2. 圆叶牵牛 种子含赤霉素A3、A5、A8、A17、A19、A20、A26、A27、A29、A33、A44、A55。又含圣苯素-7-O-β-D-吡喃木糖基-O-β-D-吡喃阿拉伯糖甙(eriodictyol-7-O-β-D-xylopyanosyl-O-β-D-arabinopyranoside),2-羟基-1,4-戊二酮(2-hydro-xy-1-phenyl-1,4-pentadione),2,3,22,23-四羟基胆甾-6-酮(brassinone),栗木甾酮(castasterone)和麦角类生物碱(ergot alkaloid)。
  [编辑本段]药理作用
  牵牛子甙的化学性质与泻根素(Jalapin)相似,有强烈的泻下作用。牵牛子甙在肠内遇胆汁及肠液分解出牵牛子素,刺激肠道,增进蠕动,导致泻下。据动物试验,黑丑与白丑泻下作用并无区别。关于牵牛子的泻下作用原理,研究很少,它与硫酸镁、大黄不同,在泻下时,不引起血糖的剧烈变化,但能加速菊糖(Inulin)在肾脏中之排出,可能有利尿作用。牵牛子的水、醇浸剂对小鼠皆有泻下作用,但经煎煮后,即失去作用。除去牵牛子甙后的水溶液,似仍有泻下作用,故除已知的牵牛子甙外,可能还含有其他泻下成分。在体外试验,黑丑、白丑对猪蛔尚有某些驱虫效果。牵牛子甙似能兴奋离体兔肠及离体大鼠子宫;静脉注射1mg/kg对麻醉犬、兔的血压、呼吸无明显影响。对小鼠皮下注射之半数致死量为37;5mg/kg。对人有毒性,但不大,大量除对胃肠的直接刺激引起呕吐、腹痛、腹泻与粘液血便外,还可能刺激肾脏,引起血尿,重者尚可损及神经系统,发生语言障碍、昏迷等。三色牵牛(Ipomoeatricolor)含异麦角酰胺(Isolyserga-nide)、麦角酰胺(Lysergamide)及裸麦角碱,有致幻作用。致泻:种子乙醇或水浸出液1.5-3g/kg灌胃,对小鼠有泻下作用,但煎剂则失去致泻能力。兴奋平滑肌:所含树脂0.2%浓度,对家兔离体肠管及子宫均有兴奋作用;皮下注射小鼠的半数致死量为37.5mg/kg。牵牛子甙水解产物的盐,可使豚鼠小肠、盲肠、大肠收缩,而牵牛子甙本身无此作用。
  [编辑本段]药(毒)理学
  厚朴煎剂小鼠腹腔注射的半数致死量 为 6.12± 0.038g/kg。木兰箭毒碱小鼠腹腔注射的半数致死量为 45.55mg/kg。厚朴煎剂给猫静脉注射的最小致死量为4.25±1.25g/kg。厚朴煎剂给小鼠一次灌胃60g/kg,观察3天,未见死亡。
  [编辑本段]各家论述
  1.李杲:牵牛子,《本草》名医续注云,味苦寒能除湿,利小水,治下疰脚气。据所说,气味主治俱误矣,何以明之?凡药中用牵牛者,少则动大便,多则下水,此乃泻气之药,试取尝之,即得辛辣之味,久而嚼之,猛烈雄壮,渐渐不绝,非辛如何?续注家乃谓味苦寒,其苦寒果安在哉?若以为泻湿之药,犹不知其的也。何则?此物但能泻气中之湿热,不能泻血中之湿热。夫湿者水之别称,有形者也,若肺先受湿,则宜用之。今用药者不问有湿无湿,但伤食,或欲动大便,或有热服,或作常服,克化之药俱用牵牛,岂不误哉?殊不知牵牛辛烈,泻人元气,比诸辛药泻气尤甚,以其辛之雄烈故也。今重为备言之,若病湿胜,湿气不得施化,致大小便不通,则宜用之耳,湿去则气得周流,所谓五脏有邪,更相平也。
  2.《汤液本草》:牵牛,以气药引则入气,以大黄引则入血。
  3.《纲目》:牵牛,自宋以后,北人常用取快,及刘守真、张子和出,又倡为通用下药,李明之目击其事,故著其说极力?之。牵牛治水气在肺,喘满肿胀,下焦郁遏,腰背胀肿,及大肠风秘气秘,卓有殊功。但病在血分及脾胃虚弱而痞满者,则不可取快一时及常服,暗伤元气也。一宗室夫人,年几六十,平生苦肠结病,旬日一行,甚于生产,服养血润燥药则泥膈不快,服硝、黄通利药则若罔知,如此三十余年矣,时珍诊其人体肥,膏梁而多优郁,日吐酸痰碗许乃宽,又多火病,此乃三焦之气壅滞,有升无降,津液皆化为痰饮,不能下滋肠腑,非血燥比也。润剂留滞,硝、黄徒入血分,不能通气,俱为痰阻,故无效也。乃用牵牛末,皂荚膏丸与服,即便通利,自是但觉肠结,一服就顺,亦不妨食,且复精爽。盖牵牛能走气分,通三焦,气顺则痰逐饮消,上下通快矣,外甥柳乔,素多酒色,病下极胀痛,二便不通,不能坐卧,立哭呻吟者七昼夜。医用通利药不效,遣人叩予,予思此乃湿热之邪在精道,壅胀隧路,病在二阴之间,故前阻小便,后阻大便,病不在大肠、膀胱也。乃用楝实、茴香。穿山甲诸药,入牵牛加倍,水煎服,一服而减,三服而平。牵牛能达右肾命门,走精隧,人所不知,惟东垣李明之知之,故明之治下焦阳虚,天真丹用牵牛以盐水炒黑,入佐沉香、杜仲、破故纸。官桂诸药,深得补泻兼施之妙,方见《医学发明》。又东垣治脾湿太过,通身浮肿,喘不得卧,腹如鼓,海金沙散,亦以牵牛为君,则东垣未尽弃牵牛不用,但贵施之得道耳。
  4.《本草正》:牵牛,古方多为散、丸,若用救急,亦可佐群药煎服,然大泄元气,凡虚弱之人须忌之。
  5.《本草正义》:牵牛,善泄湿热,通利水道,亦走大便,故《别录》谓其苦寒,至李氏东垣,以其兼有辛莶气味,遂谓是辛热雄烈。按,此物甚滑,通泄是其专长,试细嚼之,惟其皮稍有辛味,古今主治,皆用之于湿热气滞,实肿胀满,二便不通,则东垣以为辛热,张石顽和之,亦谓辛温,皆属不确,当以《别录》之苦寒为正。又莶气戟人喉舌,细味之亦在皮中,所谓有毒,盖即在此。古方中凡用末子,均称止用头末,正以其皮粘韧,不易细碎,只用头末,则弃其皮,而可无辛莶之毒,颇有意味可思。《别录》主治专破气分之壅滞,泄水湿之肿满,除风利便,固皆以实病言之,此药功用,固已包举无遗,甄权申之,则日治痃癣气块,利大小便,东垣谓除气分湿热,三焦壅结;濒湖谓逐痰饮,通大肠气秘、风秘、杀虫。亦皆主结滞壅塞立论。而甄权乃又谓除虚肿,则误矣。《日华本草》谓治腰痛,盖亦指湿热阻塞,腰脊不利之症,惟言之殊不分明,究属非是。
  6.《别录》:主下气,疗脚满水肿,除风毒,利小便。
  7.《药性论》:治痃癖气块,利大小便,除水气,虚肿。落胎。
  8.《日华子本草》:取腰痛,下冷脓,并一切气壅滞。李杲:除气分湿热,三焦壅结。
  9.《纲目》:逐痰消饮,通大肠气秘风秘,杀虫。
  10.《江苏植药志》:适用于急性关节炎。
  11.《新疆中草药手册》:泻下,利尿,杀虫。治便秘,消化不良,肾炎水肿,小儿咽喉炎。
  [编辑本段]选方
  ①治水肿:牵牛子末之,水服方寸匕,日一,以小便利为度。(《千金方》)②治停饮肿满:黑牵牛头末四两,茴香一两(炒),或加木香一两。上为细末,以生姜自然汁调一、二钱,临卧服。(《儒门事亲》禹功散)③治水气蛊胀满:白牵牛、黑牵牛各二钱。上为末,和大麦面四两,为烧饼,临卧用茶汤一杯下,降气为验。(《宣明论方》一气散)④治小儿腹胀,水气流肿,膀胱实热,小便赤涩:牵牛生研一钱,青皮汤空心下。一加木香减半,丸服。(《郑氏小儿方》)⑤治四肢肿满:厚朴(去皮,姜汁制炒)半两,牵牛子五两(炒取末二两)。上细末。每服二钱,煎姜、枣汤调下。(《本事方》)⑥治小儿肺胀喘满,胸高气急,两肋扇动,陷下作坑,两鼻窍张,闷乱嗽渴,声嘎不鸣,痰涎潮塞,俗云马脾风:白牵牛一两(半生半熟),黑牵牛一两(半生半熟),川大黄、槟榔各一两。上为细末。三岁儿每服二钱,冷浆水调下,涎多加腻粉少许,无时,加蜜少许。(田氏《保婴集》牛黄夺命散)⑦治脚气胫已满,捏之没指者:牵牛子,捣,蜜丸,如小豆大五丸,吞之。(《补缺肘后方》)⑧治一切虫积:牵牛子二两(炒,研为末),槟榔一两,使君子肉五十个(微炒)。俱为末。每服二钱,沙糖调下,小儿减半。(《永类钤方》)⑨治大肠风秘壅热结涩:牵牛子(黑色,微炒,捣取其中粉)一两,桃仁(末)半两,以熟蜜和丸如梧桐子。温水服三、二十丸。(《本草衍义》)⑩治冷气流注,腰疼不能俯仰:延胡索二两,破故纸(炒)二两,黑牵牛子三两(炒)。上为细末,煨大蒜研搜丸,如梧桐子大。每服三十丸,煎葱须盐汤送下,食前服。(《杨氏家藏方》牵牛丸)11.治肾气作痛:黑、白牵牛等分。炒为末,每服三钱,用猪腰子切,入茴香百粒,川椒五十粒,掺牵牛末入内扎定,纸包煨熟,空心食之,酒下,取出恶物效。(《仁斋直指方》)12.治肠痈有脓,胀闭不出:牵牛子头末三钱,大黄二钱,穿山甲(煅)二钱,乳香、没药各一钱。俱为末。每服三钱,白汤调服。(《张三丰仙传方》)13.治梅毒,横痃:白牵牛仁,每次五、六钱,煎汤内服。(《泉州本草》)14.治风热赤眼:黑丑仁为末,调葱白汤敷患处。(《泉州本草》)
  [编辑本段]用药禁忌
  孕妇及胃弱气虚者忌服。
  1.《日华子本草》:得青木香、干姜良。
  2.《本草衍义补遗》:不胀满,不大便秘者勿用。
  3.《品汇精要》:妊娠不可服。
  4.《本草备要》:若湿热在血分,胃弱气虚人禁用。
  [编辑本段]动植物形态
  1.牵牛,一年生攀援草本。茎缠绕,长2m能上能下,被倒向的短柔毛及杂有倒向或开展的长硬毛。叶互生;叶柄长2-15cm;叶片宽卵形中近圆形,深或浅3裂,偶有5裂,长4-15cm,宽.5-14cm,基部心形,中裂片长圆形或卵圆形,渐尖或骤尖,侧裂片较短,三角形,裂口锐或圆,叶裂片长圆形或卵圆形,渐尖或柔尖,侧裂片较短,三角形,裂口锐或圆,叶面被微硬的柔毛。花腋生,单一或2-3朵着生于花序梗顶端,花序梗长短不一,被毛;苞片2,线形或叶状;萼片5,近等长,狭披针形,外面有毛;花冠漏斗状,长5-10cm,蓝紫色或紫红色,花冠管色淡;雄蕊5,不伸出花冠外,花丝不等长,基部稍阔,有毛;雌蕊1,子房无毛,3室,柱头头状。蒴果近球形,直径0.8-1.3cm,3瓣裂。种子5-6颗,卵状三棱形,黑褐色或米黄色。花期7-9月,果期8-10月。
  2.形态与牵牛相似,主要区别点是:叶片圆心形或宽卵状心形,长4-18cm,宽3.5cm,通常全缘。花腋生,单一或2-5朵成伞形聚伞花序,萼片卵状披针形。
  [编辑本段]药用植物栽培
  1.气候土壤: 牵牛适应性较强,对气候土壤要求不严,但以温和的气候和中等肥沃的砂质壤土为宜。过于低湿或干燥瘦嵴之地,生长均不良。
  2.种植: 以种子繁殖,于4-5月播种。播种前翻土作畦(如利用篱边、墙边、田埂等地种植,则不需作畦),畦宽约1.3m,按株距23-33cm、行距30-50cm开穴,每穴播种子4-5粒。播后覆细土一层,以种子不露出为宜。种子发芽后,幼苗生长真叶2-3片时,便须间苗、补苗,亦可进行移植。以每穴保留2-3株即可。
  3.田间管理:在藤蔓尚短时,可以进行松土除草1-2次。至藤蔓较长时,须设立支柱,或间种玉米、高梁等作物使其攀援其上,以代支柱。施肥,在前期施以人粪尿、硫酸氨等氮肥为宜,后期多施草木灰、骨粉等磷钾肥为宜。
  [编辑本段]生药材鉴定
  性状鉴别 种子似桔瓣状,略具3棱,长5-7mm,宽3-5mm。表面灰黑色(黑丑),或淡黄白色(白丑),背面弓状隆起,两侧面稍平坦,略具皱纹,背面正中有一条浅纵沟,腹面棱线下端为类圆形浅色种脐。质坚硬,横切面可见淡黄色或黄绿色皱缩折叠的子叶2片。水浸后种皮呈龟裂状,有明显粘液,气微味辛、苦、有麻舌感。以颗粒饱满、无果皮等杂质者为佳。
  显微鉴别 种子横切面:表皮细胞1列,略呈切向延长,有的含棕色物,间有分化成单细胞的非腺毛表皮下方为1列扁小的下皮细胞。栅状细胞层由2-3列细胞组成,靠外缘有一光辉带。营养层由数列切向延长的细胞及颓废细胞组成,有细小维管束,薄壁细胞中含细小淀粉粒。内胚乳最外1-2列细胞类方形,壁稍厚,内侧细胞的壁粘液化。子叶落归根薄壁组织中散有多数圆形的分泌腔,直径约至108μm;薄壁细胞中充满糊粉粒及脂肪油滴,并含草酸钙簇晶;直径约18μm。

已知三角形的内切圆半径为3cm,三角形的周长为18cm,则该三角形的面积为___cm。

led驱动IC smd sot23-6 63b18(好像是63818) 请用过的朋友帮忙告知型号及品牌。_18cmic公告-第1张-游戏-拼搏

暂时先用这几张

1,内切圆与三角形三边在切点处相切,所以id垂直bc,所以三角形bci面积是id乘以bc除以2(底乘高除2)?同理,可得

Sabi=ab*fi/2

Saci=ac*ie/2

Sbci=bc*id/2

因为fi=id=ie=r=3

所以以上三式相加得

总面积S=(ab+bc+ac)*r/2=Cabc*r/2=27

2,

由1题得:Sabc=1/2(Cabc*r)

由余弦定理,正弦定理可得三角形abc的面积,可得半径r

3,同2

4,圆o为三角形内切圆,所以可用方法2

标签 led驱动ic smd sot236 63b18好像是63818 请用过的朋友帮忙告知型号及品牌_18cmic公告